

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

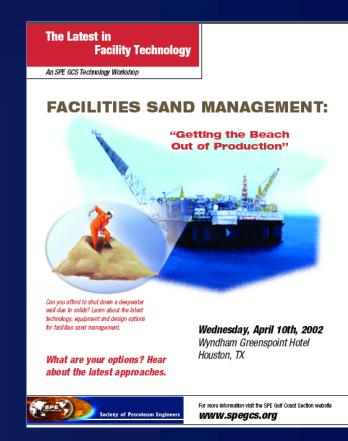
Additional support provided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Enhanced Production Through Surface Facilities Sand Management

Dr. Hank Rawlins Technical Director

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl


Road Map

Sand Management Options Facilities Sand Management Five-Steps of Sand Management

- 1. Separation
- 2. Collection
- 3. Cleaning
- 4. Dewatering
- 5. Transport

The One Slide to Stay Awake For Tech Paper References...

Training Module Outline Two-Day SPE Course

Module	Title
FSM-M1	Introduction to Facilities Sand Management
FSM-M2	The Nature of Solids
FSM-M3	Solids Handling
FSM-M4	Liquid Desander
FSM-M5	Multiphase Desander
FSM-M6	Wellhead Screen-Filters
FSM-M7	Separator Solids Removal and Cyclonic Jetting
FSM-M8	Sand Cleaning
FSM-M9	Solids Dewatering, Transport, and Disposal
FSM-M10	Subsea Sand Management
FSM-M11	Heavy Oil Sand Management

Solids Production

All oil & gas wells produce sand.

- Now or at some point in future
- Especially with water breakthrough ullet
- Small or large amounts and sizes

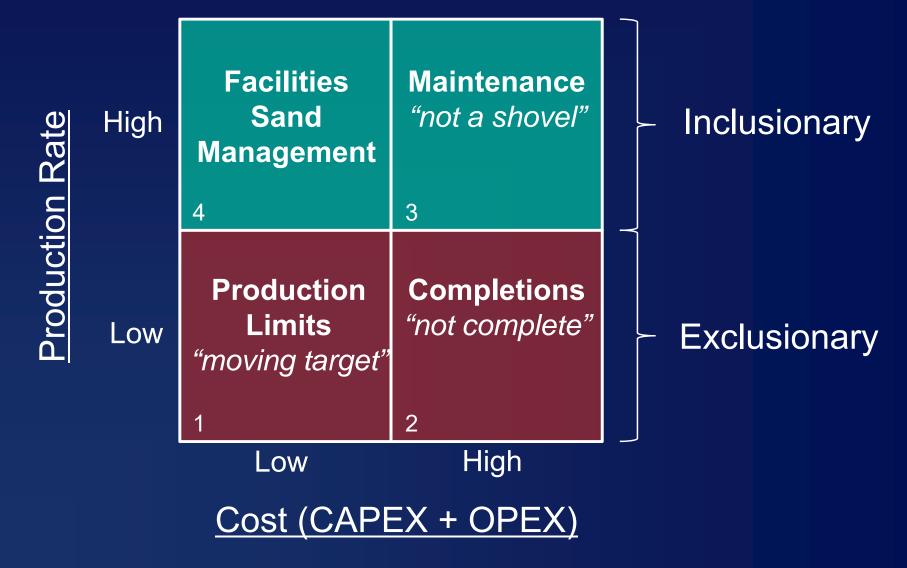
Onshore Egypt

Know what comes out of your well.

What are Produced Solids?

Inorganic, Insoluble Particulate Material

- Not asphaltene, paraffin, wax, hydrate, or resin (organic)
- Not precipitates (soluble) or scale (non-particulate)
- Natural solids: from reservoir material
- Artificial solids: corrosion debris, proppant, junk, etc.


Primarily "sand" by classification

- ISO/Wentworth "sand" from 63-2000 microns
- Practical separation limit is 10 microns

Solid particles separable in facilities equipment

Sand Management Options

Don't minimize production.

Facilities Sand Management

Facilities:

<u>Sand</u>: <u>Management</u>: Surface/subsea equipment for separation and energy addition Tiny loose pieces of rock Handle with a *degree of skill*

Not a waste stream exercise... ... but a critical Flow Assurance issue

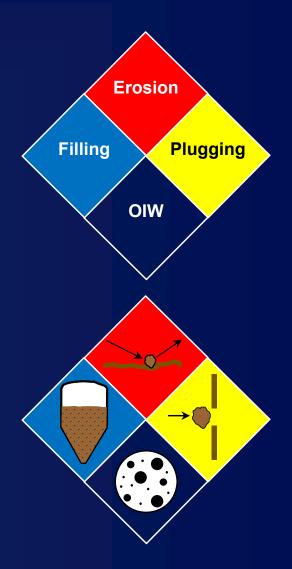
Effects on Facilties

<u>Erosion</u>

- High velocity zones
- Chokes, pipe, valves, deoilers, etc.

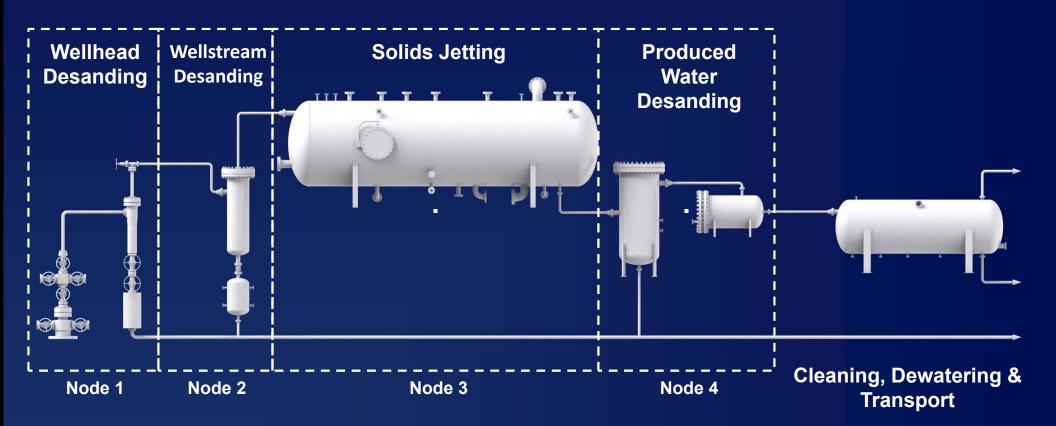
Collection/Filling

- Low velocity zones
- Vessels, tanks, separators, float cells, etc.
- Creates corrosion zones where solids collect

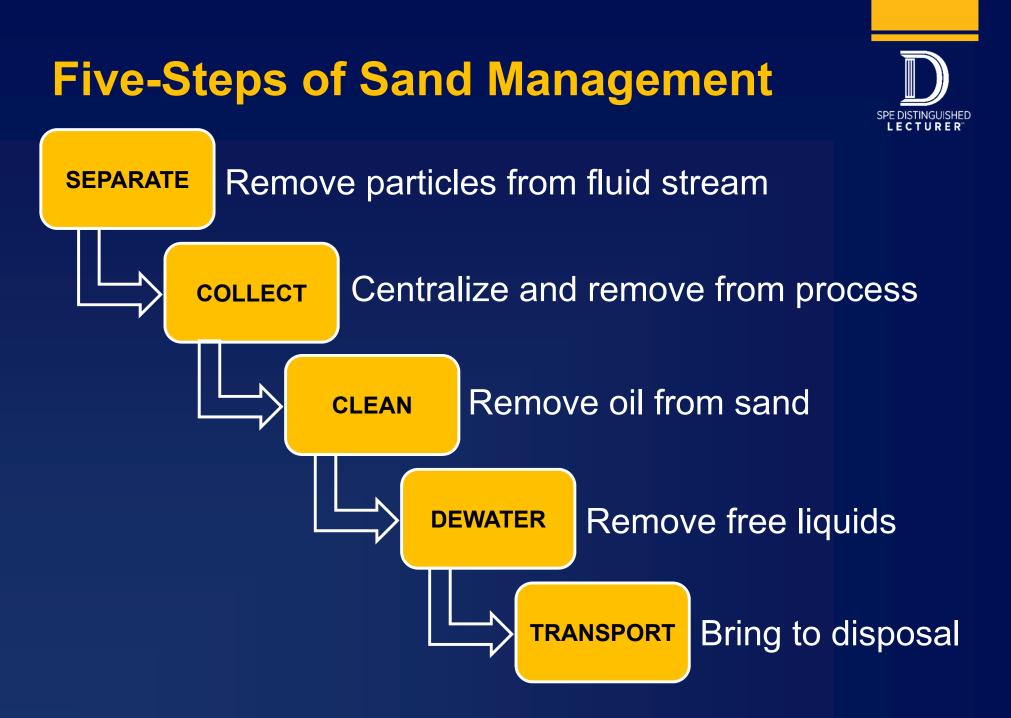

Interference

 Instruments plugged, valve range of motion, seals, swivels, any small orifices or gaps

Oil-in-Water (OIW) Content


- Increases OIW concentration
- Stabilizes emulsions

Define what problem sand causes.



Where to Remove Sand?

Solve the right problem.

Follow <u>all</u> the steps.

Step 1: Separate

Remove particles from fluid stream

- Dilute, dispersed particles in fluid (oil + water + gas)
- Solids must be separable
- Continuous flow process

Enhanced Separation

- Cyclonic: Multiphase (Wellhead) or Produced Water Desander
- Impact w/ Retention: Filters or Screens
- Flotation: Attached to oil droplets

Low Velocity Zones

Bottom of production separator

Sand separation equipment is the smallest...

...compared to oil-water-gas separation

Focus on the methodology – not a piece of equipment.

Unit Process: Separation

Sand Filter API 10K Australia 2013

Wellhead Desander API 5K Malaysia 2012

PW Desander ASME 150# US GoM 1999

Step 2: Collect

Gather separated solids to central location

- Isolate from pressure and flow
- Minimize letdown points
- Remove from process without interrupting production

Minimize volume of fluids with solids

- Desander accumulator minimizes hydrocarbon ingress
- Jetting systems: large amounts of process fluids

Any vessel/tank - isolated, vented, and flushed

- Batch process
- Fill with clean water to aid cleaning and prevent packing/plugging

Unit Process: Collection

Wellhead Desander Acc. ASME 1500#, 600 liter Malaysia 2011

Wellstream Desander Acc. ASME 900#, 108 liter Turkmenistan 2011

PW Desander Acc. (integral) ASME 150#, 65 liter (Graphic)

Step 3: Clean

Remove adsorbed oil from surface of particle

• Not H₂S, pyrophoric material, heavy metals, or NORM

Clean to meet offshore discharge

- <1 weight% oil-on-dry solids (OSPAR spec)
- Offshore cleaning systems use batch cyclone-recirculation loop
- Specialized systems use chemicals, heat, and/or biological agents

Integrate cleaning action in all areas

- Separation, collection, and transport
- May eliminate need for specific cleaning station

Cleaned sand is easer to dewater and transport

Unit Process: Cleaning

Attrition Scrubbing System Floating Barge Venezuela 1997

Attrition Scrubbing System Deepwater Spar Malaysia 2014

Attrition Scrubbing System Fixed Platform Malaysia 2015

Step 4: Dewater

Removing free liquids associated with sand

- Minimizes disposal volume
- Up to 90% reduction in volume

Open (non-hazardous) dewatering

- Liquids to open drain, sand/vapors open to atmosphere
- Hanging dewatering bag

Closed (hazardous) dewatering

- Liquids captured to closed drain, vapors captured to vent system, and solids not exposed to atmosphere or personnel
- Screen-lined bin

Dewatering bag/bin also transport device

Combined step with transport

Unit Process: Dewatering

Two-Stage System (Open) Desilter & Dewatering Bag Malaysia 2011

Enclosure System (Open) Dewatering Bin Austria 2006

DNV Transport (Closed) Dewatering Bin Saudi Arabia 2013

Step 5: Transport

Disposal site determines route & method Overboard discharge:

• Transported by pipe as a slurry to caisson

Landfill disposal:

• Transported in dewatering bag or bin to landfill

Slurry injection:

Transported by pipe as a slurry to injection pump
Unique methods:

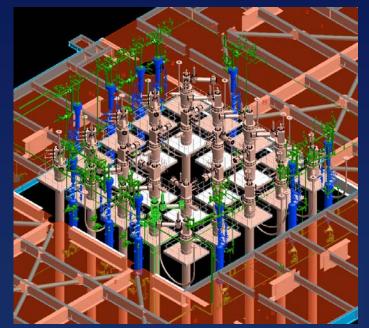
- Add sand to road surface mix
- Add sand to existing drill cuttings disposal
- Grind smaller size prior to injection disposal
- Bioremediation

Know where to put the sand.

Unit Process: Transport

Slurry Injection Disposal Sand from PW System Australia 2007

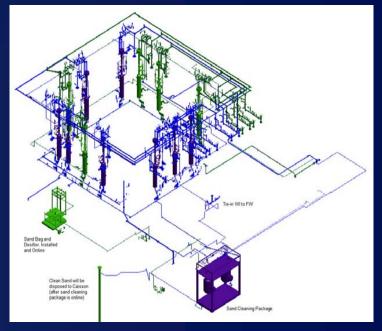
Dewatering Bag to Skip Transport Wellhead Desander System Malaysia 2011



Dewatering Bin Transport Sand Jetting System Malaysia 2015

Putting it all Together (OTC-24705)

Collapsed Expandable Screens Completion and FSM Approach


10 Wellhead Desanders Retrofit into Well bay of Spar Three-year Re-completion Work

Separation

Wellhead Desander, 1500# Solids D98 = 16 micron 600 liter Accumulator

Collection

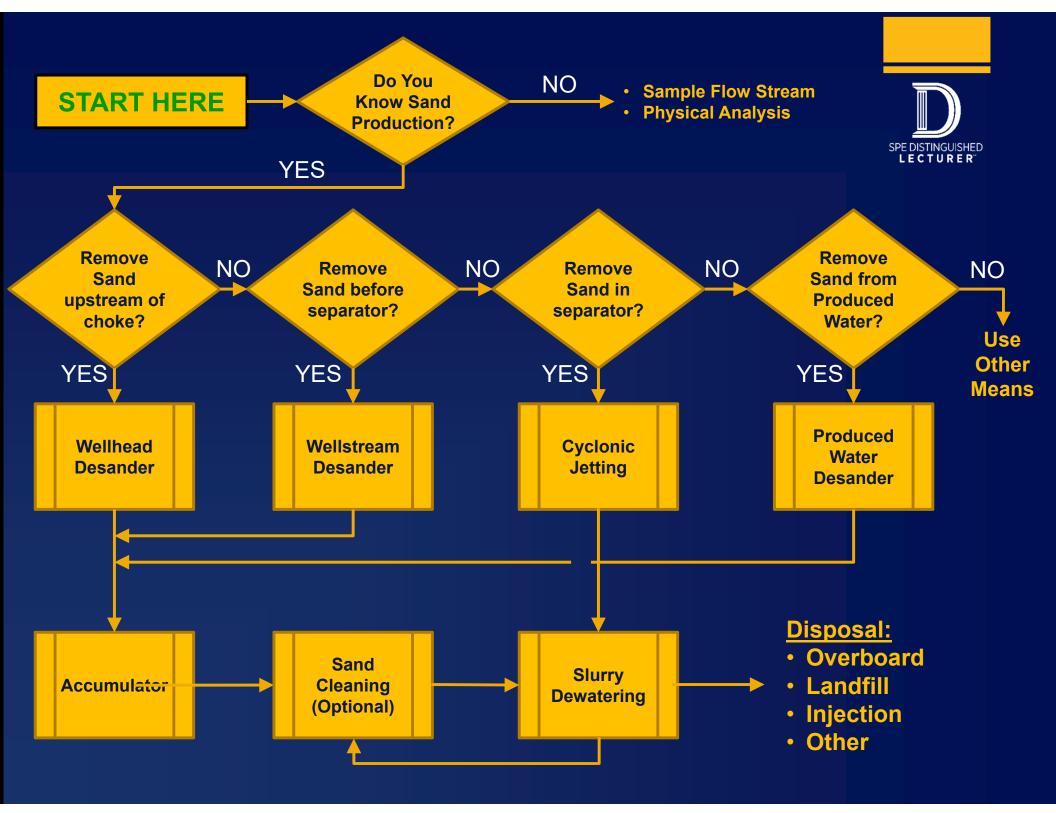
Piping header from Accumulators Transport Slurry to Dewatering Or to Cleaning Station

Continued (OTC-24705)

Cleaning

Recirculation Scrubbing Design: 32 tons/day <1 wt. % oil on sand

Dewatering



Four-Place Layout Desilter – Bulk Removal Dewater Bag – Final Removal

Transport

Piping header from Accumulators Transport Slurry to Dewatering Or to Cleaning Station

The One Slide to Stay Awake For

All oil and gas wells produce sand.

- 1. Know what comes out of your well.
- 2. Don't minimize production.
- 3. Define what problem sand causes.
- 4. Solve the right problem.
- 5. Follow all the steps.
- 6. Focus on the methodology not a piece of equipment.
- 7. Know where to put the sand!

Facilities Sand Management into initial system

- Add taps and blinds (and space) for future equipment
- Add place for sand to go don't choke system
- Ensure parts can have material upgrade in future
- Spares management can be a philosophy but not the best

Technical Paper References...

(OnePetro papers in yellow)

- 1. SPE-27797: "Fluid Production Enhancement by Exploiting Sand Production"
- 2. SPE-63235: "How Can Sand Production Yield a Several-Fold Increase in Productivity: Experimental and Field Data"
- 3. SPE-28815: "The Separation of Solids and Liquids With Hydrocyclone-Based Technology for Water Treatment and Crude Processing"
- 4. SPE-185658: "Separating Solids First Design and Operation of the Multiphase Desander"
- 5. Priestman et al., Trans IChemE: "The Design and Operation of Oil-Gas Production Separator Desanding Systems"
- 6. Lohne, Trans IChemE: "Separation of Solids From Produced Water Using Hydrocyclone Technology"
- 7. SPE-166118: "Design of a Cyclonic Solids Jetting Device and Slurry Transport System for Production Systems"
- 8. SPE-72999: "Design and Installation of a Sand Separation and Handling System for a Gulf of Mexico Oil Production Facility"
- 9. OTC-24705: "Upgrade of Spar Topsides with Comprehensive Facilities Sand Management System"
- 10.SPE-56812: "Generalization of API RP 14E for Erosive Service in Multiphase Production"
- 11.SPE-66577: "E&P Waste Management in the Orinoco Delta"
- 12. Jones et al., IPEC: "Discharge Practices and Standards for Offshore Operations around the World"

Where to get more info?

Connect on LinkedIn in

- Publish a FSM article each week on Tuesday (60+ so far)
- Material taken directly from FSM training course
- Check out company website (www.eprocess-tech.com)

Get articles from OnePetro (www.onepetro.org)

Email me (hrawlins@eprocess-tech.com)

Take Facilities Sand Management two-day training course

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation Visit SPE.org/dl

#SPEDL

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

