Slide 2

SOCIETY OF PETROLEUM ENGINEERS ANNUAL TECHNICAL CONFERENCE AND EXHIBITION San Antonio, Texas, USA 9-11 October 2017 Henry B. Gonzalez Convention Center www.spe.org/atce/2017

<u>SPE-187109-MS</u>

Partial Processing: Produced Water Debottlenecking Unlocking Production on Offshore Thailand MOPU

eProcess

Hank Rawlins, PhD, P.E. eProcess Technologies

Too Much Water

- Produced water as a hindrance to hydrocarbon production
- Problem with ageing fields and facilities
- Water fills up space and volume in facility where oil & gas should be

SPE-187109-MS • Partial Processing • Hank Rawlins

Slide 9

Commercial Systems

2012, North Sea UK Sector

- Apache Forties Bravo
- 36 API oil at 80 C
- Two-stage produced water debottlenecking
- 120 MBPD produced water, <10 ppm mg/l oil
- Doubled oil production

2013, Congo

- Perenco Emeraud
- 22 API oil at 24 C
- Three-stage produced water debottlenecking
- 80 MBPD produced water, <30 mg/l oil
- Quadrupled oil production

SPE>>ATCE

SPE-187109-MS • Partial Processing • Hank Rawlins

Slide 11

Slide 12

Design Guidelines: for Water Constrained Systems

Watercut must be >60% (water continuous liquid phase) Inlet flow regime must NOT be severely slugging Gas void fraction >40% requires initial Gas/Liquid separation step Emulsion stability may adversely affect performance

SPE>>ATCE

SPE-187109-MS • Partial Processing • Hank Rawlins

Case Study: Gulf of Thailand, Songkhla Province

Field Design:

- Two fields, each with MOPU and FSO
- MOPU gas/liquid separation
- FSO water separation and treatment
- Produced water pumped back to the MOPU for re-injection

Field 1:

- Current: ~40 MBLPD @ ~90% watercut
- Potential: ~80 MBLPD

Field 2:

• Current: ~60 MBLPD @ ~90% watercut

Potential: ~100 MBLPD

- **Fluids Properties:**
- Oil: 25 API
- Temperature: 75 C

SPE-187109-MS • Partial Processing • Hank Rawlins

Situation Assessment Each MOPU process system at full capacity Infield drilling campaign completed to bring on new ESP wells but NO capacity for additional production Primary bottlenecks: G-L separation vessel and flowlines to/from FSO The Challenge: Separate & treat water on MOPU to increase combined production: Total Liquids: ~100 MBLPD to >180 MBLPD Oil Production: 10,000 to 18,000 BPD Re-inject separated water on MOPU with water quality <50 ppm oil Must be highly automated to minimize operator interaction

Field Trial: Single Liner Portable Kit
Single liner field trial
Capacity: 190-290 BPD
Two-Stage System
Preseparation Hydrocyclone
Deoiling Hydrocyclone
Performance envelope identified
Effects of water clarifier and demulsifier chemicals tested

SPE-187109-MS • Partial Processing • Hank Rawlins

SPE>>ATCE

Field Test Results

Headline Results

- >90% of the produced water could be separated by a two-stage PP system
- Presep water outlet: 100 300 ppm
- Deoiler water outlet: 50 ppm
- Watercut reduced from 90% to 30-50%

Achieved With:

- Preseparator PDR ≥1.4
- Preseparator $\Delta P_{i-w} \ge 8 \text{ psi}$

Other Key Observations:

Performance achieved also with NO water clarifier or demulsifier

Preseparator Outlet ~100 to 300 ppm

Deoiler Outlet ~50 ppm

SPE-187109-MS • Partial Processing • Hank Rawlins

Slide 16

			Slide 22
Ρ	roject Gains		
(Oil production incre	eased by 80%	
	OPEX Reductions		
	MOPU Fuel	Fluid pumping from MOPU to FSO reduced by 73%	
	MOPU Power	Lower backpressure on ESP wells – more oil for same energy	
	FSO Fuel 1	Fluid heating reduced – most significant reduction	
	FSO Fuel 2	Fluid pumping from FSO to MOPU reduced by 60%	
	FSO Storage	Less fluid storage required – potentially reduced size of FSO	
	Chemical 1	Decreased biocide	
	Chemical 2	Decreased demulsifier	
	Chemical 3	Decreased oxygen scavenger	
	Equipment Expense	No extra pumps required for increased production	
SPE-187109-MS • Partial Processing • Hank			nk Rawlins

